Following the initial positive results of conjugation of polymers to proteins based on simple conjugation methods, the chemistry has continued to experience advances with the development of new selective approaches of conjugation, some based on the exploitation of enzymes as tools to couple polymers and proteins or on genetic methods (e.g., thiol conjugation on an inserted cysteine or genetic code expansion with Amber codon technique). Among different techniques PEGylation has become the gold standard in this field. Protein PEGylation is primarily studied for prolonging the half-life of proteins by decreasing their body elimination, either through a reduced kidney clearance or a reduced liver clearance. Furthermore, PEGylation can also reduce the immunogenicity of non-human proteins by shielding the protein to the immune system.
In this field we investigated several polymers beside PEG, for example polyoxazolines, hyaluronic acid, polysialic acid, polyglutamic acids, etc.
To further extend the potentialities of polymer conjugation we thoroughly investigated the enzymatic conjugation approaches based on Transglutaminase. In nature, this enzyme catalyses the transfer of the acyl donor, the side chain of a methionine in a protein, to the amino donor, the side chain of a lysine in a second protein, thus forming a cross-link. The amino donor can be substituted by an amino group of a polymer for generating easily and rapidly homogenous conjugates in which the polymer is linked to single glutamines. We also demonstrated that transglutaminase can targeted the lysines of a protein when the acyl donor is the polymer, generating lysine coupled polymer-protein conjugates with the great advantage of selectivity of the transglutaminase.
2022
Battista MR, Grigoletto A, Tedeschini T, Cellucci A, Colaceci F, Laufer R, Pasut G, Di Marco A. Efficacy of PEGylated ciliary neurotrophic factor superagonist variant in diet-induced obesity mice. PLoS ONE. 2022;17(3):e0265749. doi: 10.1371/journal.pone.0265749
2021
Dalla Pietà A, Carpanese D, Grigoletto A, Tosi A, Dalla Santa S, Pedersen GK, Christensen D, Meléndez-Alafort L, Barbieri V, De Benedictis P, Pasut G, Montagner IM, Rosato A. Hyaluronan is a natural and effective immunological adjuvant for protein-based vaccines. Cell Mol Immunol. 2021;18(5):1197-1210
2021
Delfino D, Mori G, Rivetti C, Grigoletto A, Bizzotto G, Cavozzi C, Malatesta M, Cavazzini D, Pasut G, Percudani R. Actin-Resistant DNase1L2 as a Potential Therapeutics for CF Lung Disease. Biomolecules. 2021;11(3):410. doi: 10.3390/biom11030410.
2020
Maso K, Grigoletto A, Raccagni L, Bellini M, Marigo I, Ingangi V, Suzuki A, Hirai M, Kamiya M, Yoshioka H, Pasut G. Poly(L-glutamic acid)-co-poly(ethylene glycol) block copolymers for protein conjugation. J Control Release. 2020;324:228-237. doi: 10.1016/j.jconrel.2020.05.015
2017
Grigoletto A, Mero A, Yoshioka H, Schiavon O, Pasut G. Covalent immobilisation of transglutaminase: stability and applications in protein pegylation. J Drug Target. 2017;25:856-864. doi: 10.1080/1061186X.2017.1363211
2016
Spolaore B, Raboni S, Satwekar AA, Grigoletto A, Mero A, Montagner IM, Rosato A, Pasut G, Fontana A. Site-specific transglutaminase-mediated conjugation of interferon α-2b at glutamine or lysine residues. Bioconjug Chem. 2016;27(11):2695-2706. doi: 10.1021/acs.bioconjchem.6b00468.
2016
Mero A, Grigoletto A, Maso K, Yoshioka H, Rosato A, Pasut G. Site-selective enzymatic chemistry for polymer conjugation to protein lysine residues: pegylation of G-CSF at lysine-41. Pol Chem. 2016;7:6545-6553. doi: 10.1039/C6PY01616B
2016
Grigoletto A, Mero A, Zanusso I, Schiavon O, Pasut G. Chemical and Enzymatic Site Specific pegylation of hGH: The stability and in vivo activity of PEG-N-terminal-hGH and PEG-Gln141-hGH conjugates. Macromol Biosci. 2016;16(1):50-6. doi: 10.1002/mabi.201500282.
2014
Mero A, Campisi M, Favero M, Barbera C, Secchieri C, Dayer JM, Goldring MB, Goldring SR, Pasut G. A hyaluronic acid-salmon calcitonin conjugate for the local treatment of osteoarthritis: Chondro-protective effect in a rabbit model of early OA. J Control Release. 2014;187:30-38. doi: 10.1016/j.jconrel.2014.05.008
2013
Mero A, Pasqualin M, Campisi M, Renier D, Pasut G. Conjugation of hyaluronan to proteins. Carbohydr. Polym. 2013;92:2163-2170. doi: 10.1016/j.carbpol.2012.11.090.
2013
Da Silva Freitas D, Mero A, Pasut G. Chemical and enzymatic site specific pegylation of hGH. Bioconjug Chem. 2013:24;456-463. doi: 10.1021/bc300594y
2012
Mero A, Fang Z, Pasut G, Veronese FM, Viegas TX. Selective conjugation of poly (2-ethyl 2-oxazoline) to granulocyte colony stimulating factor. J Control Release. 2012;159:353-361. doi: 10.1016/j.jconrel.2012.02.025
Our research aims to investigate new approaches of drug conjugation to mAb and the potential of new hydrophilic linkers able to counterbalance the common high hydrophobicity of drugs, thus allowing higher drug payload
2021
Tedeschini T, Campara B, Grigoletto A, Bellini M, Salvalaio M, Matsuno Y, Suzuki A, Yoshioka H, Pasut G. Polyethylene glycol-based linkers as hydrophilicity reservoir for antibody-drug conjugates. J Control Release. 2021;337:431-447. doi: 10.1016/j.jconrel.2021.07.041.
Liposomes are well-known drug delivery systems that have been mainly used for anticancer drugs. From the initial hope to achieve a higher anticancer efficacy, thanks to a better tumour accumulation of liposomal drugs with respect to free drugs by EPR effects, several studies showed that basic liposomes are mainly useful to decrease drugs' side effects. Our research is directed to investigate targeted liposomes, by mAbs or mAbs' fragments, and stable liposome coatings.
2023
Canato E, Grigoletto A, Zanotto I, Tedeschini T, Campara B, Quaglio G, Toffoli G, Mandracchia D, Dinarello A, Tiso N, Argenton F, Sayaf K, Guido M, Gabbia D, De Martin S, Pasut G. Anti-HER2 Super Stealth Immunoliposomes for Targeted-Chemotherapy. Adv Healthc Mater. 2023;XXXX. doi: 10.1002/adhm.202301650
2020
Alajati A, D'Ambrosio M, Troiani M, Mosole S, Pellegrini L, Chen J, Revandkar A, Bolis M, Theurillat JP, Guccini I, Losa M, Calcinotto A, De Bernardis G, Pasquini E, D'Antuono R, Sharp A, Figueiredo I, Nava Rodrigues D, Welti J, Gil V, Yuan W, Vlajnic T, Bubendorf L, Chiorino G, Gnetti L, Torrano V, Carracedo A, Camplese L, Hirabayashi S, Canato E, Pasut G, Montopoli M, Rüschoff JH, Wild P, Moch H, De Bono J, Alimonti A. CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J Clin Invest. 2020;130(5):2435-2450. doi: 10.1172/JCI131133.
2018
Catanzaro D, Nicolosi S, Cocetta V, Salvalaio M, Pagetta A, Ragazzi E, Montopoli M, Pasut G. Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells. Oncotarget. 2018;9:16847-16860. doi: 10.18632/oncotarget.24708
2014
Pasut G, Paolino D, Celia C, Mero A, Joseph AS, Wolfram J, Cosco D, Schiavon O, Shen H, Fresta M. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. J Control Release. 2014;199:106-113. doi: 10.1016/j.jconrel.2014.12.008.
No Code Website Builder